Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
J. appl. oral sci ; 21(2): 190-195, Mar-Apr/2013. tab, graf
Article in English | LILACS | ID: lil-674365

ABSTRACT

Objective: This study evaluated the variation of conversion degree (DC) in the 12 hours following initial photoactivation of a low-shrinkage composite resin (Venus Diamond). Material and Methods: The conversion degree was monitored for 12 hours using Attenuated Total Reflection (ATR) F-TIR Spectroscopy. The composite was placed in 1 or 2 mm rings and cured for 10 or 20 seconds with a LED lamp. ATR spectra were acquired from the bottom surface of each sample immediately after the initial photoactivation (P=0), 30 minutes (P=0.5) and 12 hours after photoactivation (P=12) in order to obtain the DC progression during the post-curing period. Interactions between thickness (T), irradiation time (I) and post-curing (P) on the DC were calculated through ANOVA testing. Results: All the first order interactions were statistically significant, with the exception of the T-P interaction. Furthermore, the shift from P=0 to P=0.5 had a statistically higher influence than the shift from P=0.5 to P=12. The post-curing period played a fundamental role in reaching higher DC values with the low-shrinkage composite resin tested in this study. Moreover, both the irradiation time and the composite thickness strongly influenced the DC. Conclusions: Increased irradiation time may be useful in obtaining a high conversion degree (DC) with a low-shrinkage nano-hybrid composite resin, particularly with 2 mm composite layers.


Subject(s)
Humans , Curing Lights, Dental , Composite Resins/radiation effects , Nanocomposites/radiation effects , Analysis of Variance , Composite Resins/chemistry , Materials Testing , Nanocomposites/chemistry , Phase Transition , Polymerization/radiation effects , Spectroscopy, Fourier Transform Infrared , Surface Properties , Time Factors
2.
São Paulo; s.n; 2010. 87 p. ilus, tab, graf. (BR).
Thesis in Portuguese | LILACS, BBO | ID: lil-594703

ABSTRACT

O tratamento térmico em compósitos restauradores diretos foi realizado a fim de verificar a influência sobre algumas propriedades, tais como a sorção, solubilidade, tenacidade à fratura e grau de conversão. Foram utilizados três compósitos: um nanoparticulado, um microhíbrido e um microparticulado. Duas fontes de luz (Halógena e LED) e dois períodos (48h e 28dias) de armazenagem, com exceção da solubilidade. O tratamento térmico foi realizado em estufa convencional (170o C por 5min), sendo metade dos corpos de prova (cps) tratados e a outra, apenas fotoativada.Para sorção e solubilidade, foram confeccionados 60 cps de acordo com os fatores analisados (n=5) em uma matriz metálica circular de dimensões 15 mm x1 mm. Para o cálculo da sorção e solubilidade, os cps foram pesados em uma Balança Analítica,inicialmente após a confecção do cp, 1hora, 24h, 48h, 7d, 14, 21 e 28d, a fim de estabelecer Massa Inicial (Mi) Massa absorvida (Ma) e Massa dessecada (Md). Para a tenacidade à fratura, foram confeccionados 240 cps de acordo com os fatores analisados (n=10) em uma matriz metálica de dimensões internas 25 mm x 5mm x 2,8 mm. O método utilizado foi o Single Edge Notch-Beam(SENB), com um entalhe de 2,3 mm posicionado no centro da matriz. Os cps eram levados à máquina universal para o ensaio de flexão e, após a ruptura, as superfícies de fratura eram analisadas no estereomicroscópio, para, em seguida, obter as imagens e calcular as dimensões do cps para inserir naequação da tenacidade à fratura.Já para o grau de conversão foram confeccionados 36 cps em uma matriz de acetato circular de 15 mm x 1 mm, posicionados entre duas lâminas microscópicas (n=3). O cálculo do grau de conversão foi determinado por espectroscopia no infravermelho (FTIR).Em geral, os estudos apresentaram uma influência significante do tratamento térmico...


The post-curing heat treatment in direct composite treatment was done to verify the influence on some properties like sorption, solubility, fracture toughness and the degree of conversion. During the referred study it was used three composites: nanoparticle, a microhybrid and a microfill. Two sources of light (Halogen and LED) and two periods (48 hours and 28 days) for each one, but not to solubility. The postcuringwas done in dry heat sterilizer of 170º C for five minutes for, half of the test samples (TS) were treated and the other half were only photoactivated. It was made 60 TS to sorption and solubility according to the analyzed factors (n=5) in a 15mm x 1mm round metal matrix. To calculate sorption and solubility the TS were weighted in a analytical balance, right after the beginning of the production in 1 hour, 24 hours, 7days, 14 days, 21 days and 28 days respectively in order to establish the initial absorbed mass (Mi), the absorbed mass (Ma) and the desiccated mass (Md ). It was produced 240 TS to the fracture toughness according to factors (n=10) in a 25mm x 5mm x 2,8mm in metallic matrix. The Single Edge Notch-Beam (SENB), was the used method during this study with a notch of 2,3mm placed in the center of the matrix. The TS were taken to a universal machine to flexural test so after the rupture referred surface fractures were analyzed in a stereomicroscope and then it was possible to get the images to calculate the size of the TS to insert the calculus of the fracture toughness...


Subject(s)
Humans , Male , Female , Spectrum Analysis/methods , Solubility , Thermic Treatment/methods
3.
J. appl. oral sci ; 16(4): 266-270, July-Aug. 2008. ilus, tab
Article in English | LILACS | ID: lil-486494

ABSTRACT

The aim of this study was to evaluate the effect of different curing methods on the stress generated by the polymerization shrinkage of a restorative composite in two moments: immediately after light exposure and after 5 min. Photoactivation was performed using two different light sources: (1) xenon plasma arc (PAC) light (1,500 mW/cm2 - 3s) and (2) a quartz-tungsten-halogen (QTH) light with three light-curing regimens: continuous exposure (40 s at 800 mW/cm2 - CL); soft-start (10 s at 150 mW/cm2 and 30 s at 800 mW/cm2 - SS) and intermittent light [cycles of 4 s (2 s with light on at 600 mW/cm2 and 2 s of light off), for 80s - IL]. The composite resin was applied between two 5-mm diameter metallic rods, mounted in a servohydraulic machine. The maximum stress was recorded immediately after light exposure (FF) and after 5 min (5F). The results were submitted to ANOVA and Tukey's test (5 percent). For each method, the results obtained in FF and 5F were, respectively: CL (3.58 and 4.46 MPa); SS (2.99 and 4.36 MPa); IL (3.11 and 4.32 MPa) and PAC (0.72 and 3.27 MPa). The stress generated by the polymerization shrinkage during light exposure can be associated with the photoactivation method used. A significant increase in the stress level was observed during the post-curing period up to 5 min, for all evaluated methods.


Subject(s)
Composite Resins/radiation effects , Dental Stress Analysis , Light-Curing of Dental Adhesives/methods , Resin Cements/radiation effects , Curing Lights, Dental , Halogens , Materials Testing , Phase Transition , Time Factors , Xenon
SELECTION OF CITATIONS
SEARCH DETAIL